Lesson 008 Conditional Probability

Wednesday, September 27

Conditional Probability (Intuitively)

- Often events of interest will give information about each other.
- If we know that B has occurred, that may change our beliefs about A.
- We can ask: what is $P(A)$ given B has occurred?
- This is called the conditional probability A given B and is written as

$$
P(A \mid B)
$$

What is the probability that we roll a 2 on a six-sided die?

If we know that we rolled an even number, what is the probability that we roll a 2 on a six-sided die?

$$
P(A)=\frac{N_{A}}{N}=\frac{1}{6}
$$

If we know that we rolled an even number, what is the probability that we roll a 2 on a six-sided die?

If we know that we rolled an even number, what is the probability that we roll a 2 on a six-sided die?

$P(A \mid B)=\frac{N_{A \cap B}}{N_{B}}=\frac{1}{3}$

If we know that we rolled an odd number, what is the probability that we roll a 2 on a six-sided die?

If we know that we rolled an odd number, what is the probability that we roll a 2 on a six-sided die?

$$
P(A \mid B)=\frac{N_{A \cap B}}{N_{B}}=\frac{0}{3}
$$

Conditional Probability

- When we know that B has occurred, the relevant sample space is not \mathcal{S} but instead B.
- We can then approach the problem the same way as normal, taking $\mathcal{S}=B$.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Let A be the event that a card drawn is the ace of spades. Let B be the event that it is a spade. Let C be the event that it is an ace. What is $P(A \mid B)$?

Let A be the event that a card drawn is the ace of spades. Let B be the event that it is a spade. Let C be the event that it is an ace. What is $P(A \mid C)$?

Let A be the event that a card drawn is the ace of spades. Let B be the event that it is a spade. Let C be the event that it is an ace. What is $P(B \mid A)$?

Let A be the event that a card drawn is the ace of spades. Let B be the event that it is a spade. Let C be the event that it is an ace. What is $P(B \mid C)$?

Multiplication Rule

- Rearranging the expression for the conditional probability gives the multiplication rule.
$P(A \cap B)=P(A \mid B) P(B)$

What is the probability that you draw two hearts on two draws from a deck of cards?

$A:=$ Draw two hearts

$$
\begin{aligned}
N_{A} & =\binom{13}{2} \\
N & =\binom{52}{2}
\end{aligned}
$$

$$
\begin{aligned}
P(A)=\frac{N_{A}}{N} & =\frac{\binom{13}{2}}{\binom{52}{2}} \\
& =\frac{1}{17}
\end{aligned}
$$

$A:=$ First card is heart $B:=$ Second card is heart

$$
\begin{aligned}
P(A) & =\frac{13}{52} \\
P(B \mid A) & =\frac{12}{51}
\end{aligned}
$$

$P(A \cap B)=P(B \mid A) P(A)$
 $$
12,13
$$
 $$
=\frac{}{51} \times \frac{}{52}
$$
 $$
1
$$
 $$
=\frac{2}{17}
$$

The Law of Total Probability

- Suppose that we partition the sample space

$$
\mathcal{S}=A_{1} \cup A_{2} \cup A_{3} \cup \cdots=\bigcup_{i} A_{i}
$$

with all A_{i} disjoint.
-The Law of Total Probability states that

$$
P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

We have three bags of marbles: Bag 1: 75 Red and 25 Blue Bag 2: 60 Red and 40 Blue Bag 3: 45 Red and 55 Blue

A bag is selected at random, then a marble drawn at random. What is the probability it is red?

$$
\begin{aligned}
P\left(R \mid B_{1}\right) & =\frac{75}{100} \\
P\left(R \mid B_{2}\right) & =\frac{60}{100} \\
P\left(R \mid B_{3}\right) & =\frac{45}{100} \\
P\left(B_{1}\right)=P\left(B_{2}\right) & =P\left(B_{3}\right)=\frac{1}{3} \\
P(R) & =P\left(R \mid B_{1}\right) P\left(B_{1}\right)+P\left(R \mid B_{2}\right) P\left(B_{2}\right)+P\left(R \mid B_{3}\right) P\left(B_{3}\right) \\
& =\frac{1}{3}\left(\frac{75+60+45}{100}\right) \\
& =\frac{3}{5}
\end{aligned}
$$

Bayes' Theorem

- Combining these results gives Bayes' Theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

A medical test is 99\% accurate at detecting a particular illness.

In the population, 0.1% of people have the illness.

What is the probability of illness, given a positive test result?

$$
\begin{aligned}
& P(P \mid I)=0.99 \quad P\left(P \mid I^{C}\right)=0.01 \\
& P(I)=\frac{1}{1000}=0.001 \\
& P(I \mid P)=\frac{P(P \mid I) P(I)}{P(P \mid I) P(I)+P\left(P \mid I^{C}\right) P\left(I^{C}\right)} \\
& =
\end{aligned} \frac{(0.99)(0.001)}{(0.99)(0.001)+(0.01)(0.999)}, ~=\frac{11}{122}=0.09 \quad \begin{aligned}
&
\end{aligned}
$$

Two cards are drawn at random from a deck. What is the probability they are both red?

$\frac{26}{52}=\frac{1}{2}$	
$\frac{26}{52} \cdot \frac{25}{51}=\frac{25}{102}$	0%
$\frac{25}{51}$	0%
0%	

An individual has three mail accounts. 1% of messages to $A, 2 \%$ to B, and 5% to C are spam. A, B, and C receives $70 \%, 20 \%$, and 10% of the total messages. What is the probability that a message received is spam (event S)?

$$
\begin{array}{ll}
P(S \mid A) P(A)+P(S \mid B) P(B)+P(S \mid C) P(C) & 0 \% \\
\frac{P(S \mid A)+P(S \mid B)+P(S \mid C)}{3} & 0 \% \\
\frac{P(S \mid A)}{P(A)}+\frac{P(S \mid B)}{P(B)}+\frac{P(S \mid C)}{P(C)} & 0 \%
\end{array}
$$

Suppose a customer buys a digital camera. Let M and B be the event that the customer buys a memory card or extra battery, respectively. If $P(M \cap B)=0.3, P(M)=0.6$, and $P(B)=0.4$, what is $P(M \mid B)$?

$$
P(M \mid B)=0.3
$$

$$
P(M \mid B)=\frac{0.3}{0.6}=0.5
$$

$$
P(M \mid B)=0.3 \times 0.6=0.18 .
$$

\square

$$
P(M \mid B)=\frac{0.3}{0.4}=0.75
$$

